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Dynamic scaling of hysteresis in a linearly driven system 
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t Department of Physics Zhongshan University, Gnangzhou, People’s Republic of China 
f Dea”ent of physics and Mamid Scienee, Cih, Polvtechoic of Hona Konn. Kowloon 
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Abstrad We investigate the scaling behaviour of hysteresis in three-dimensional continuum 
models in a l i i  driving mode. A nonanserving N-component vector * is the order parameter 
and its dynamics are specified by the timedependent Ginzburg-Landau theory. The (*z)z and 
(*’)’ models embody spatial fiuauations of and their freeenergy functionals have a (*2)2 
and a (m2)3 interaction, respectively, with 0 0  symmetry. On the other hand, the mean- 
field model ignores all spatial Ruchlations of *. The area A of hysteresis loop, the energy 
dissipation per cycle, is taken as functions of the scanning rate R and temperahre. For the 
ferromagnetic fust-order phase uansition (FOPT), a scaling relation A = OR“ is -ed 
where R is the field-sweeping tale, n is the coefficient and the exponent n 2 1. We also discus 
experimental evidence for real systems compatible with this result, which shows that the driving 
rate dependence of energy dissipation is impoitant in nonequilibrium FOFT. 

1. Introduction 

Experimental and theoretical studies on the non-equilibrium dynamics of the first order phase 
transition (FOPT) show that there are general scaling behaviours in kinetics of ordering and 
spinodal decomposition. In the phase separation and grain growth of quenched alloys in 
a two-phase region (e.g. [l-31). the ordering dynamics obey a power law L cx P for a 
phase approaching equilibrium from an initial non-equilibrium disorder state, where L is a 
characteristic length (e.g. the average ordered domain size) and z is the time. The exponent 
a depends only on related conservation laws and 6n universal parameters. This behaviour 
displays the scaling relations of the order-parameter correlation function and its Fourier 
transform, the strvcture factor 141. The value of a can be determined based on the Binder- 
Stauffer [SI theory of cluster diffusion reaction and the Lifshitz-Slyozov [6] condensation 
theory. a = 4 for low temperatures in a long time from the former theory [7], and for 
pure systems with a conserved order parameter but no hydrodynamic couplings by the latter 
theory [6]. a = 1/(2 + d)  for intermediate temperatures in an intermediate time [7,8]. 
a = $ for a pure system with a non-conserved order parameter [g, 101. 

Hysteresis is a common non-equilibrium phenomenon at the FOPT, which concerns 
metastable states and the dynamic behaviour of a drive system. In the thennoelastic 
martensitic transformation, uniformly increasing the loading induces a FOPT and then 
linear unloading reverses it [Ill. A plot of stress U as a function of strain E yields a 
hysteresis superelastic loop. The stress hysteresis U, defined as the difference between the 
critical stresses of the forward and the reverse transformations, depends on the strain rate 
(1/H 0: -log 2) and temperature (H cx l / T ) ,  implying scaling relations (figures 21 and 22 
of [ll]). The hysteresis of ferromagnetic materials, magnetic or thermal, was investigated 
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on the basis of model systems [12,13]. The loop area A was taken as the ‘hysteresis’; 
A - H00.%020.33 where Ho is the amplitude of the magnetic field and P the frequency of 
periodic driven field when both H and C2 are low. Scaling behaviour in hysteresis has thus 
been recognized. However, the driving mode, linear or sinusoidally periodic, determines 
the characteristic variable and the form of the scaling law. 

Linear driving is commonly adopted, i.e. an external field varies uniformly with 
time. Linear heating or cooling in a differential scanning calorimeter and internal-friction 
pendulum, linear loading or unloading in thennoelastic martensitic transformation, and linear 
sweeping of magnetic field in electron spin resonance are several examples. The mechanical, 
thermal, electric or magnetic response or a driven system is investigated through their 
dependence on heating, loading or field-sweeping rate [14-I9]. In studying the domain wall 
motion of magnetic materials, the internal friction was measured with different magnetic 
field-sweeping rates k and the total dissipated dynamic energy Qv was shown to be 
proportional to * where s is an exponent parameter and s i 1 for soft ferromagnetic 
materials such as Fe, Ni and Permalloy-42 [15,16]. Similar relations appear in the plastic 
deformation of AI [18] and in the martensitic phase transition of Ni-”i [I91 where the 
heating rate f or the loading rate i serve as the natural measure of the driving. The scaling 
behaviour of dissipation in the FOR is stroogly suggested by experimental evidence of real 
systems which bas recently emerged after extensive investigation, although the Steinmetz 
law, hysteresis dissipation 0: Bk6, was published as early as in 1892 [12]. 

This work aims at describing the non-equilibrium statistical mechanics of a model 
system driven by a linearly varying external field in the FOPT. We study the response of the 
(-3’)’. and mean-field models to linear field driving. The dependence of the area of 
hysteresis loops on the linear scanning rate R and its scaling relations are determined. 

2. The (a’)’ model 

In the terminology of magnetism, the external driving force is the magnetic field H which 
increases or decreases linearly, and a hysteresis loop of magnetization M versus field H 
results from one cycle of field sweeping. The order parameter 0 is a N-component vector 
which is not conserved. The dynamics of @ are described by the time-dependent Ginzburg- 
Landau theory and its equation of motion is 

-=-r-+q ap. SF 
a t  sip 

where r is the kinetic coefficient, a constant in the case of non-conserved order parameter, 
q is Gaussian white noise given by 

( S ( G  0 )  = 0 

MZ, t )qj(zc ,  t ) )  = 2rsi js(z  - z’)s(t - t’) 

F is the Landau-Ginzburg-Wilson free-energy functional given by 

r is the temperature relative to the mean-field critical temperature, U is a parameter and H 
is the conjugate field of *. The uniform magnetic field H is taken along the direction of 
the first component of @. 
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The stochastic differential equation ( 1 )  in three-dimensional space, in the N + 00 l i t ,  
leads to the coupled integrodifferential equations [12,20,21] 

and 

ai = -(r +US + uM2 + 2uM2&1) (5c) 

The magnetization M is given by ( + ( s , t ) ) & ~ ,  C(q, t )  = (6 (q , t )  . Q(-q,t))  is the 
structure factor and CL is the transverse structure factor. The momentum cut-off is set to 
unity. 

At H = 0, the equilibrium phase is readily obtained by dropping the time derivatives 
in equation (5). At a temperature r > r, = -u / [2z2]  = -Sc, 

M = 0, ~ i ( q )  = 1/(q2 -ai) .  

At a temperature r < r, 

Consequently, when the system is quenched ftom a high-temperature paramagnetic phase 
to the ferromagnetic phase, it does not introduce any symmetry-breaking mechanism so that 
no magnetization results. The structure factor at later time can he well approximated 1211 
by 

c(q, t )  = CNG(4.t) + D(q,  t )  

where CN&. t )  = (1/q2)[1 - exp(-q2t)] relates the growth of Nambu-Goldstein modes 
and D(q,, f )  describes the ordering development which can be put in a scaling form 

D(q , t )  = Ld(t)F[qLO)I. (6) 

L is a characteristic length, d is the spatial dimension (d = 3 here) and F the scaling 
function: L( t )  - tilz. The scaling of equation (6) can he checked by the average 
wavenumber 

in a sufficiently long time, which gives 4 - L-'(t). 
We are interested in the system response to linear sweeping of an external field. 

The system will undergo an FOPr from a positivemagnetization phase to a negative- 
magnetization phase as the field reverses. The process is similar to nucleation since there is 
no sharp interface between these two phases when N is larger than unity. Equation (5), a set 



7788 F ulong et a1 

M 

I I I 
H 

Figure 2. Hysteresis loop as a function of field-sweeping rate R at I = -10 and U = 1. R = 
0.001. O.OaS, 0.01,0.05, 0.1.05, 2, 4, 6, fmm Ihe inside to the outside. 

of non-linear integrodifferential equations, cannot be solved analytically for H = Rt. We 
use numerical computation: an adaptive-size Runge-Kutta scheme to solve the equations 
and a 20-point Gaussian quadrature to evaluate the integrals. The computer program is 
checked carefully while the scaling of the quenched shucture factor also serves as a test. 
Given a temperam r < r,, a parameter U and a scanning rate R, the field increases first 
to a definite value Ho, then decreases at a rate -R to -& and finally increases again to 
Ho to complete the cycle. There is a limitation of R in computation; it will take too long 
to complete the cycle when R - 21rl (approximately equal to the relaxation rate in the 
quasi-equilibrium region) so that R < 21rl is chosen. 

The results show that the magnetization M and structure factor C are independent of 
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the initial conditions. Figure 1 shows the surface of structure factor C versus field H and 
wavenumber q. The transverse structnre factor CL reaches the maximum at H = 0 but, 
beyond a small range centred at 0, CL drops to nearly zero and is almost constant at a 
given H for different q. Figure 2 shows the sweeping rate dependence of the hysteresis 
loop, which expands horizontally and.the saturation value increases slightly with the rate 
R. Figure 3 shows hysteresis loops at different temperatures. As r becomes more negative, 
i.e. the temperature becomes lower, the fluctuation in magnetization weakens and the loop 
'grows' noticeably; both the remanence and the coercive force increase. The area A of the 
hysteresis loop, the dissipated energy per cycle, increases in both cases. Figure 4 shows 
the log A versus log R lines at different r ,  which are parallel to each other with the same 
slope IZ of about $. The data can be fitted to a scaling form 

A = a R "  (7) 

(table 1). n tends to exactly as r becomes more negative. It is related to a properry of 
the zero-temperature fixed point in quenched ordering [221. The coefficient a can be fitted 
to a&, - r)m, which gives m = 0.87 for U = 1, and m = 0.84 for U = 10. Figure 5 give 
the A/(rc - r)"' versus R lines (U = 0), both in logarithmic coordinates, and it shows that 
the dissipation scaling with linear scanning rate is applicable to different r and U. 

M 

- 
H 

Figure 3. Hysteresis loOp as a function of temperature r at P = 1 and R = 0.01. r = -1, -5, 
-10, -30, -50 from ule inside fo lhe outside. 

lhble 1. The hued values of a and n in A = aR" (figure 4). 

r a n 

- 1.0 10.62 0.45 
- 5.0 46.54 0.46 
-10 89.90 0.48 
-30 226.98 0.49 
-SO 345.19 0.49 



7790 F Zhong et a1 

1 

1 

A 
‘I 

1 

R 
Figure 4. The lines of log A versus log R at different t e m p ”  (U = 1). r = -1. -5, -10, 
-30, -50 f” the bottom U) the top. They are parallel to each other with a slope almost equal 
to f (table I). 
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Figure 5. The lines of log[A/(rc - r)“‘] “.%SUS log R .  AU data points in figure 4 at different 
tempera” now become the same line (U = 1). showing that the temperature dependence of 
the coefficient a has been taken into account The U = 10 line is also plotted. Thew hvo lines 
are based on the (@)’ model (U = 0). Another two lines are based on the model at U = 
10, U = 50 and 105.2758, for hys- loops on the side of the second-order phase boundary 
in femomagnetic ~ g i o n .  

3. The (@*)3 model 

We extend our analysis of hysteresis to the three-dimensional (@2)3 model whose fa%- 
energy functional includes a (e2p term with 0 0  symmetry: 
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(V@)' + rOZ + _ff_(O')' + L(@z)3 - 2&H. 8 
2N 3NZ 

with a new parameter U. The order parameter is non-conserved in quenched ordering [U] 
and it displays hysteresis in periodic driving [13]. In the limit of N -+ CO, its dynamics 
obey the same equation (5) except now 

ai = - ( r + u S + u M 2 + v M 4 + 2 u M Z S + u S 2 ) .  (5c) 

A paramagnetic phase and a ferromagnetic phase separated by a phase transition curve at 
H = 0 (the r-u plane) exits. This phase boundary divides into first-order 'half and second- 
order 'half by a tricritical point if 0 < v < U, = 1 6 ~ '  (the first-order boundary will develop 
two first-order wings on either side of the H = 0 plane when H is applied). For U > U,, 
two halves meet at a critical end point and the first-order curve then extends to an ordinary 
critical point [24]. For comparison, we investigate only the case U < U, as in [13]. When 
H # 0, reversing the field will induce the POPT from one direction of magnetization (up 
or down) to another when the system is initially at equilibrium in the ferromagnetic phase, 
or from the paramagnetic phase to the ferromagnetic phase when the system is initially 
in the paramagnetic phase in the first-order region so that a double hysteresis loop results. 
Furthermore, the model also exhibits a temperature-induced FOPT which we leave for further 
study. 

At H = 0, a temperature drop changes the system from an initial disordered phase to 
the ferromagnetic phase in both the second- and the first-order regions. Figure 6 shows the 
p-' versus t curve with different parameters including the (a')' model (U = 0). At a long 
time, all data points lie on the same curve. It shows that the 4 growth law is universal and 
confirms our computation. 

t 
Figure 6. The j- '  versus f m e .  The curye 'Lickens' owing to overlapping of data points. 

We obtain the area A of hysteresis loop by a computation similar to that in section 2. 
When the system is initially at equilibrium in the ferromagnetic phase, A scales as aR" 
where n N f on the whole boundary and is almost independent of temperature r .  On the 
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other hand, the temperature dependence of the coefficient a divides into two cases. For the 
second-order case, 

( 9 4  
m a =a(.. - r )  

where r, = -US, - US,". a and m depend on the parameters U and U. This case is shown 
in figure 5 too (lines with U = 50 and 105.2758 (< U=)). All lines there are parallel to each 
other with a slope of about 4 following A = aR". The scaling of A = a(rc - r)"'R" is 
fitted and shown in table 2. For the first order transition 

a = exp[a(rf - r)"']. (9b) 

a and m are functions of U and v. rr is the first-order transition temperature in the r-u plane 
and is also a function of U and uZ3, e.g. rf = 2.53 for U = -25.59 and U = 50 (see table 1 
in 1131). Figure 7 shows three lines of A/exp[a'(rf - r)"'] versus R, both in logarithmic 
coordinates. They are all parallel to each other with a slope of 4. The fitted values of m 
and a are listed in table 3. 

Table 2. The fitted values of m and n (figure 5). 

u I, m n 
~ 

1 0  0.87 11.75 
10 0 0.84 1.96 
10 50 0.52 1.69 
10 105.2758 0.49 1.39 

R 
Figure 7. The lines of log~A/eXp[a(r~-r)']] versus log R for hysteresis loops on the side of 
the fun-order phase boundary in the ferromagnetic region. When the upper and lower lines m 
shined In 2 downwards and upwa~ds, respectively, the three lines overlap into one as shown in 
the inset 
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Table 3. Fined values of m and Q’ (figure 71, 

1193 

2 ’ O1 

U v m a‘ 

-25.59 50 0.12 1.75 
-25.59 10528 0.18 1.22 
-12.77 10528 0.24 0.95 

2 

- -&- r=Z,u=-25.59,~=105.2758 

3 - r=4,u=-25.59,v=50 
I -e- r=-1 O,u=l  ,v=O 

-a-- r=-1 O,u=-25.59,~=1 05.2758 /- Ao=l50.00 
2 

4 100 

q 2  

I 

10-1 

2 

10-2 

10-3 2 10-2 2 10-1 2 100 
R 

Figure 8. The log(A - Ao) versus R lines. The lowest line is the ‘exceptional’ case in the 
(@)3 theory (FIPD). AU the other three lies me from the mean-field model. 

For the first-order transition, double hysteresis loops develop. It is the field-theoretical 
paramagnetic double hysteresis (PTPDH). When r = 2, U = -25.59 and U = 105.2758, that 
is, away from the phase boundary rf = 1.28 (r > rf)  and in the paramagnetic phase, the 
loop area scales as 

A = A o + a R ”  (10) 

(figure 8) with n = 0.70, where A0 is the area of the static hysteresis loop solved from 
equation (5) by taking the time derivatives to be zero. It is noticed that the exponent is 
close to two thirds that of the mean-field model (see the next section). This is because 
themial fluctuations in this theory are not strong enough to drive the system over the 
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- Stationary - R=0.1 

I ." 
H 

Figure 9. (a) Hysteresis loops as functions of field sweeping rate. U = 1, U = 0 and temperature 
r = -10. R = 0.0.05,0.1.05 and 1 from the inside to ihe outside. (b) Hysteresis and double 
hysteresis loops as functions of field sweeping me: I( = -25.59, U = 105.2758, r = -10, for 
the outside loops and U = -25.59, U = 50 and r = 4, for the inside loops. The outside loups 
have four rates of 0.05, 0.1, 0.5 and 1: lhe inside loops also have four, 0.01, 0.05, 0.1 and 0.5, 
in which the first three result in double loops. 

transition barrier so that the phase transition occurs only as the spinodal field is reached, 
just as in the mean-field model. The effect of thermal fluctuations on the phase transition 
will be reported later. 

For the system in the ferromagnetic phase initially, the area of the hysteresis loop of 
the field-driven phase transition, either the FOPT or the second-order phase transition, scales 
as the f power of the sweeping rate R. For the system in the paramagnetic phase initially, 
there are some exceptions; the exponent may he 1 near the hicritical point or may be ahout 
5. These cases show that the loop area does not scale in the same universal class. 



Hysteresis scaling under linear driving 7795 

4. The mean-field model 

We now make a mean-field approximation to the two models. AU spatial fluctuations of the 
order parameters are now ignored. the free energy is 

F = f rM2 + 4 + %uM6 - HM. (11) 

dM/dt =-+(rM+uM3+uM5-HH) (12) 

The equation of motion is 

where time is also in units of (2r)-l. Hysteresis loops and double hysteresis loops are 
shown in figure 9(a) for U = 0, and in figure 9@) for U # 0. The stationary curve 
H = r M  + uMZ + uM5 - H is also presented for comparison. Transformation occurs 
only when H Hc, the spinodal field, since there is no fluctuation. The area of the loops 
scales as A = A0 + aR", where A0 is the area between Hc and -H,. The scaling lines 
are also shown in figure 8 together with that of F~PDH. The l i e s  are parallel to each other 
with a slope (the exponent) n = 0.67, very close to n = 0.70 for FTPDH. It follows that 
both the mean-field and the FrPDH models belong to a class different from the theoretical 
ferromagnetic model, although m P H  has already taken spatial fluctuation into account. 

5. Discussion 

The timedependent Ginzburg-Landau theory is a prototype formulation applied successfully 
in the dynamics of critical phenomena and FOE.  On the basis of this theory we investigate 
the hysteresis of the and mean-field models in a linear driving mode. When 
the systems are initially at equilibrium in the ferromagnetic phase, the loop area A obeys 
a power law, aR112. The exponent is independent of temperature r and parameter U or 
U. However, the scaling of the coefficient a with temperature has two forms as shown by 
equation (9). For the mean-field model and FrF'DH, there is a non-zero static hysteresis and 
the loop area scales as shown by equation (10) with an exponent close to 5. 

The field-theoretical models possess continuous symmetry and concern homogeneous 
nucleation. On comparison of the scaling of the dissipation, a R'", with the scaling of the 
characteristic length L in equation (6), L c( t112, it is readily seen that the former is not as 
general as the latter as shown in figure 6 when exceptions such as 1 and 5 are considered. 
However, theoretical investigation does give a scaling expression and value of exponent 
compatible with preliminary experimental evidence [14-191. 
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